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5 SECTION I

i INTRODUCTION

i This final technical report documents the current status and

accomplishments of the research performed by the University of

Dayton for the Air Force Office of Scientific Research (AFOSR),

Broad Agency Announcement under Contract No. F49620-88-C-0040.

3 The research documented herein was conducted by the University of

Dayton Research Institute (UDRI) as the prime contractor, with the

University of Pittsburgh, Institute for Computational Mathematics

and Applications (ICMA), as its subcontractor. Although this

document is issued as the final report for the one-year research

performed during the reporting period, the research status and

accomplishments represent a continuation of the earlier two-year

3 effort which was supported by the AFOSR Fast Algorithm Initiative

under Contract No. F49620-85-C-0137.I
1. BACKGROUND

i The overall theme of the UDRI-ICMA joint research program is

the efficient computation of the development of the free turbulent

round jet by the time-dependent Navier-Stokes Equations. As dis-

cussed in Krishnamurthy et al. (1987) , the only feasible approach3 for predicting jet turbulence at present involves a combination of

(i) the direct computation of the complete equations on a coarsely

3 resolved grid (as dictated by available computing resources) to

describe the large-scale motion by means of large-eddy simulation

(LES), (ii) accurate modeling of subgrid-scale (SGS) turbulence to

describe the small-scale motion that is not explicitly resolved,

and (iii) the proper coupling of the SGS turbulence model to the

LES computations. It is precisely this three-pronged approach

that has governed the conduct of the present research prograr.

3 Accordingly, this report summarizes the salient aspects of the

research at UDRI and ICMA, addressing the aforementioned items.

I
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The LES computations have been based upon the ALgorithms for

1 GAs Equations (ALGAE) computer code, which has been developed by

ICMA. Although it was recognized that this procedure did not

correspond to a true LES of circular-jet turbulence in view of its

two-dimensional formulation, the joint research program accepted

ALGAE as a baseline computational procedure that can be refined

and optimized for the LES of the round jet through successive

modifications. Thus, ICMA has continued to be responsible for the

3development of the LES numerical algorithms and their efficient

implementation on vector computers. UDRI has been responsible for

3 research in SGS turbulence modeling, asymptotic development of the

farfield structure, and integration of ICMA computational efforts.

* 2. SCOPE OF RESEARCH

3 The research on SGS turbulence modeling has investigated

one-point closure models and focused on the eddy-viscosity model

3 to facilitate the incorporation of a variable-viscosity capability

in the ALGAE procedure. The specific eddy-viscosity model that

was suggested for ICMA application to LES computation is based on

the algebraic mixing-length formulation of Launder et al. (1972)

A crucial aspect of SGS turbulence is the asymptotic analysis of

the farfield. Free- and wall-shear turbulent flows asymptotically

attain the so-called fully developed state when the flow becomes

5 self-similar. The recent adverse-pressure-gradient boundary-layer

asymptotic analysis of Bush and Krishnamurthy (1987) demonstrated

3 the viability of the mixing-length model. Although the boundary-

layer analysis is relevant to the case of ducted-jet flowfields,

its results are not directly applicable to the case of a free jet.

Therefore, present research has addressed the asymptotic analysis

of the fully developed region of the round jet to examine the

applicability of the eddy-viscosity model to SGS turbulence. The

results of this analysis, given in Bush and Krishnamurthy (1988),

I suggest that the mixing-length model is indeed a good candidate

for round-jet SGS turbulence These results provide, in addition,

3 farfield information, with which the conditions imposed in ALGAE

computations on certain artificially introduced pseudo boundaries

must be consistent. Appendix A documents the round-jet analysis.

2
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Preliminary ALGAE computations at ICMA failed to reproduce

3 the analytical solution of the two-dimensional inviscid jet. This

failure was largely due to inadequate spatial resolution near the

jet boundary. Subsequent use of a nonzero and constant value of

molecular viscosity did compute the qualitative features of the

analytical solution of the two-dimensional jet. Further computa-

tional testing of the ALGAE code has not addressed the flowfield

of the round jet and the incorporation of the turbulent viscosity

3 that is specified by the mixing-length model. Other computational

aspects addressed by ICMA research include the development of ;

theory dealing with the construction of hybrid-difference methods,

and the description of algorithms for the numerical simulation of

three-dimensional flows. These are documented in Appendix B.

3. OUTLINE OF REPORT

A brief discussion of the current status and accomplishments

3 of the research is presented in Section II. Section III lists

the documentation from the research sponsored under this program.3 Section IV shows the research personnel supported by this progra-.

I3
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3 SECTION II

3 STATUS OF RESEARCH

I The following paragraphs summarize the research progress to

date. Detailed descriptions are available in the Appendices.

1. ASYMPTOTIC FARFIELD DEVELOPMENTI
As emphasized in Krishnamurthy et al. (1987), the initial

3 SGS turbulence modeling effort has investigated one-point closure

models and selected the mixing-length eddy-viscosity model for use

in ICMA computations. A computational validation of this model by

the ALGAE procedure remains to be carried out. Successful valida-

tions by LES calculations of the nearfield should serve to provide

3 benchmark data for comparison with more refined SGS models.

Another criterion for establishing the suitability of the

SGS turbulence model is the degree of success in its ability to

3 predict the farfield. This requires the determination of the

structure of the turbulent jet far enough downstream of the nozzle

exit that there is no residual effect of the initial conditions,

and self-similarity of the flow is attained. For this downstream

region, an asymptotic analysis of the Reynolds time-averaged equa-

tions and complementary boundary conditions, with limit-process

expansions developed in the limit of large Reynolds number, has

3 been completed and the uniformly valid flow behavior, from the jet

centerline to the ambient farfield, has been determined.

The analysis, shown in Appendix A, reveals the existence.

far downstream of the nozzle exit, of a turbulent core region, an

irrotational exterior region, and a distinguished intermediate

region. Appropriate independent and dependent variables for ai.

3 three regions are identified and the self-similar formulations

therein are obtained. The solutions for the turbulent nor'".

14



stresses and the mean pressure in the core region are ascertained5through the consideration of higher-order approximations of the

boundary-value problem, in conjunction with the modeling of the

experimental data. The resulting core-region solutions are not

uniformly valid at the outer edge of this region. To obtain a

uniformly valid description of the jet flow, it is necessary to

introduce, in addition to the downstream core region, a downstream

exterior region, at the outer edge of which the flow quantities

3 reach their ambient values; and a downstream intermediate region,

in which there is a change from a core-region-like flow to an

3 exterior-region-like one.

The farfield aspects of the jet flow are not often discussed

in the literature. Landau and Lifshitz (1959) determine "the mean

flow in the jet outside the turbulent region," which (roughly)

3 corresponds to the downstream exterior region. Present analysis

shows that, to leading order of approximation, the exterior region

3 is a turbulent region: the flow is irrotational, yet there is a

convection--pressure-gradient--turbulent-stress balance in both

the axial and radial momentum equations. Whereas the resulting

mean-velocity solutions are essentially those obtained by Landau

and Lifshitz, the exterior-region stress- and pressure-function

solutions represent new information on the farfield flow behavior.

3 Although the leading-order solutions for the radial velocity

in the core and exterior regions match directly, the corresponding

3 solutions for other flow quantities do not. An examination of the

leading-order and higher-order solutions in these two regions (but

3 especially those for the core region) suggests the existence of a

downstream intermediate region. It is seen that in this region

the leading-order solutions of all flow quantities match directly

to all of the leading-order core-region solutions (in a nearfield

overlap domain) and also match directly to all of the leading-

order exterior-region solutions (in a farfield overlap domain).

With the presentation of the pertinent core-, exterior-, and

intermediate-region solutions and with the determination of the

3 core-region/intermediate-region matching and of the exterior-

35
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region/intermediate-region matching, the uniformly valid picture

5 of the structure or the self-similar turbulent axisymmetric jet is

complete. The analytical predictions of the distributions of the

axial/radial velocities and the shear stress in the core region

are compared with the experimental data of Wygnanski and Fiedler

(1969), with good results. Available experimental results,

i however, do not extend to the exterior region.

5 The foregoing validation of the eddy-viscosity model in the

farfield development of the jet apart, the asymptotic analysis is

5 also of value in providing the needed farfield information for the

LES computations. The specification of the boundary conditions

is a key issue in the numerical simulation of the jet by the ALGAE

code. Whereas the LES research addresses the development of a jet

discharging into an unbounded domain, the ALGAE-based computation

requires confined flowfields and artificially introduced pseudo

boundaries. The axis of symmetry, of course, is a real boundary

3 and does not pose any difficulty. It is the farfield boundaries

(at large radial and axial distances) that cause problems. The

if asymptotic analysis of the fully developed region provides a means

to specify these boundary conditions. The asymptotic farfield

solutions do apply to the downstream pseudo boundary, provided it

is at least 10 jet diameters downstream of the nozzle exit (exper-

imental evidence suggests that the tully developed region occurs

between 10 and 50 jet diameters). These solutions also apply to

the radially outward boundary (i.e., the top pseudo boundary where

3 free-slip wall conditions have been imposed in the ALGAE computa-

tions), but only at axial distances exceeding 10 jet diameters.

3 Thus, it is essential that the ALGAE-based predictions must be

consistent with the asymptotic results for axial distances exceed-

3 ing 10 jet diameters.

2. COMPUTATIONAL CONSIDERATIONS

ICMA research during the reporting perid has considered

3 three major computational topics, a detailed discussion of which

is presented in Appendix B.

3 6
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ASYMPTOTIC ANALYSIS OF THE FULLY DEVELOPED REGION OF

3 AN INCOMPRESSIBLE, FREE, TURBULENT, ROUND JET

3 By W. B. BUSH

King, Buck & Associates, Inc., San Diego, CA 92110, USA

I AND L. KRISHNAMURTHY

University of Dayton Research Institute, Dayton, OH 45469, USA

ABSTRACT

The structure of the farfield turbulent region of an incompressible free

jet developing downstream of an axisymmetric nozzle is studied by means of the

Reynolds time-averaged equations. The analysis employs the method of matched

asymptotic expansions, with limit-process expansions developed in the limit of

large Reynolds number. The analysis reveals the existence, far downstream of

3 the nozzle exit, of a turbulent core region, an irrotational exterior region,

and a distinguished intermediate region. Self-similar formulations are sought

for all three regions in terms of appropriate independent and dependet

variables. The stress- and pressure-function solutions for the exterio

region, unlike the mean-velocity solutions, represent new information on thE

farfield flow behavior. The analytical results of the centerline decay of

the mean axial velocity and those of the radial distributions of the axial and

radial mean-velocity components and the shear- and normal-stress components

are compared with available experimental data.I
I
I
I
I
I
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1. INTRODUCTION

I The self-similar turbulent round jet, because it is a relatively simple

turbulent shear flow, has been the subject of extensive study, theoretical

(see, e.g., Abramovich 1963; Hinze 1975; Townsend 1976; Schlichting 1979), as

well as experimental (see, e.g., Reichardt 1941; Hinze & Van der Hegge Zijnen

1949; Wygnanski & Fiedler 1969). From the first study (Tollmien 1926) up to

the present, the (classical) theoretical approach has been to concentrate on3 the leading-order approximation of the boundary-value problem for the down-

stream core region to determine the solutions for the mean velocity and the

* turbulent shear stress.

This paper presents a theoretical study of the structure of a turbulent

incompressible, isothermal jet issuing from an axisymmetric nozzle. Attention

is directed to the flowfield region far enough downstream of the nozzle exit

* that there is no residual effect of the initial conditions and self-similarity

is attained. In particular, by means of a higher-order asymptotic analysis

* of the Reynolds time-averaged equations and complementary boundary conditions,

presented in § 2, the uniformly valid behavior of the flow quantities, from

the jet centerline to the ambient farfield, is determined for this downstream

self-similar region (see figure 1).

U In § 3, through the consideration of higher-order approximations of the

boundary-value problem, in conjunction with the modeling of the experimental

data, the solutions for the turbulent normal stresses and the mean pressure in

the core region are also ascertained. This higher-order analysis establishes5 that the resulting core-region solutions are not uniformly valid at the outer

edge of this region. To obtain a uniformly valid picture of the flowfield, it

is necessary to introduce, in addition to the downstream core region, a down-

stream exterior region, at the outer edge of which the flow quantities attain

their ambient values; and a downstream intermediate region, in which the flow

changes from a core-region-like flow to an exterior-region-like one.

3 The farfield aspects of the jet flow are not often discussed in the lit-

erature. Landau & Lifshitz (1959) determine the "mean flow in the jet outside

* the turbulent region," which (roughly) corresponds to the downstream exterior

region. In § 5, the appropriate scaling of the variables indicates that, to3 leading order of approximation, the exterior region is a turbulent region: the

flow is irrotational, yet there is a convection--pressure-gradient--turbulent-5 [1-1]
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I AMBIENT

I
EXTERIOR REGION:I
xs = 6X, rs = dR: ; = (rs/X s) = (R/X);

y = Ips: U -- 2Us, V =d 2 vs , Q = 63dWS,

P = 6 4 p  T = 64TS , M = 64 /I, N = 64 , s .

I

IINTERMEDIATE REGION:
I xk = dX, rk = 6112R: e = (rk/Xk) = -1/2(R/X);

Y = Aoxk+dk: U = 62 Uk, V = -63/ 2Ark- 1 + 5/2 ,k, Q =6512CAk,

P = d3 pk , T = 67/2Tk, M = 63 Pk, N = 63 1k.I
I

CORE REGION:I
x = 6X, r = R: t7 = (rix) = 6-1(R/X);

Y =,P: U=u, V =dv, Q = o,

* P= 6p, T = 6T, M = 61A, N = 6 z.

3 JET CENTERLINE

I
Figure 1. Schematic diagram of the asymptotic structure.
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stress balance in both the axial and the radial momentum equations. Whereas

the resulting mean-velocity solutions are essentially the ones determined by

Landau & Lifshitz, the exterior-region "ress- and pressure-function solutions

represent new information concerning the farfield behavior of the flow.

Although the leading-order core-region and exterior-region solutions for

the radial velocity match directly, the corresponding solutions for the other

flow quantities do not. An examination of the leading-order and higher-order

solutions for these two regions (but especially those for the -ore region)

suggests the existence of the downstream intermediate region, formulated and

i analyzed in § 4. The leading-order intermediate-region solutions of all flow

quantities match directly to all of the leading-order core-region solutions

(in a nearfield overlap domain) and also match directly to all of the leading-

order exterior-region solutions (in a farfield overlap domain).

With the presentation of the pertinent solutions for the core, exterior,

and intermediate regions, and with the determination of the core-region/

3 intermediate-region matching and of the exterior-region/intermediate-region

matching, the uniformly valid description of the structure of the self-similar

turbulent axisymmetric jet is complete. The analytical predictions of the

core-region distributions of the axial and radial velocities and the shear

stress are compared in § 6 with the experimental data of Wygnanski & Fiedler,

with good results. Available experimental results, however, do not extend to

the exterior region, as defined in this paper.

I
I
I
I
I
I
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I
2. EQUATIONS OF MEAN NOTIONI

Consider the steady flow of the axisymmetric/round fully developed

turbulent jet of a homogeneous, incompressible fluid (p = const.). Let X =

(X-Xo )/B and R = R/B represent the axial and radial coordinates, with X, R =
J

0 denoting the origin of the jet, B., the initial jet radius, and X0 0 the
"origin of similarity." The mean velocity components in the axial and radial

directions, respectively, are U = U/U. and V = V/U., with U., the reference

jet-exit speed; the mean pressure is P = (P-P )/PU , with P denoting the

ambient pressure. The turbulent shear- and normal-stress components are
'-,~ )/2 -12 ~2 2 '

=TU , v i , and M = T -(u ) an = RR ari NT =-(v' )/Ui.

In the foregoing, the tilde quantities are dimensional, the primes denote the

fluctuating quantities, and the overbars denote time-averaging.

* The continuity and momentum equations describing the mean flow are

aU 1 a(RV) :aU 1 a(21)
x R =0: R aR' R

9U + V + a- = Ia ) - a , (2.2a)* TX YJ _ I~R 'R (2 2a)

Iay av aP = (Ia (RN) +TJ

The farfield and centerline boundary conditions for (2.1) and (2.2) are

I U, V, P, T, M, N -+ 0 as R O, (2.3a)

V, 4-U' T -. 0, U - finite as R -* 0. (2.3b)

The downstream analysis considered here does not address the initial

conditions.

I
I
I

I [2-13



3. THE DOUNSTREIM CORE REGION

Attention is directed to the flow region far downstream of the nozzle

exit, characterized by x = 6X and r = R, with x, r - 0(l), and with the

stretching parameter 6 << 1, such that (R/X) = 6 (r/x) - 0(6). (In § 6, from a

comparison of theory and experiment, it is determined that 6 -- 0 (10
-L)) The

I flow quantities for this downstream region are, in turn, scaled as

+1(X, R; ...) = 4(x, r; 6): U = u, V = 6v, (3.1a)

P(X, R; ... ) = 6 p(x, r; 6), (3.1b)

T(X, R; ...) = 6T(x, r; 6),

M(X, R; ...) = 6pi(x, r; 6), N(X, R; ...) = 6v(x, r; 6). (3.1c)

Thus, the differential equations of mean motion in this region are

au 1 a(rv) = 0 LaiP 1 91 (3.2)
ax r r u ' Tr'x

I u + v + 6 ap - F [a(rr) + all'3
u ax jarj ax ~r ar 7 (.a

[ x + v + 2k a + T (3.3b)

[uX r ar aax

The centerline boundary conditions are, now,

v, a---, r - 0, u -+ finite as r -+ 0. (3.4)

In turn, (3.2)-(3.4) can be combined to give the following integral relations:

IJupx dp = -rv, 
(3.5a)

[ ~[r(u, + 5 (p-,uflp dpi r r[uv-T] , (3.5b)T.- 0 -,

-[uv-rP do r p dP - V + bvl. (3.5c)
a3x 0u-~ d r 0 l

I
I [3-1]



As r - x, subject to verification of the farfield behavior, it is taken

that (3.5b) becomes

d CtJ U2 + 6(p-u) )rdr] [uvi] =0:
lx 0 1  0r

0 ,

J [u2 + 6(p-p)]r dr (1/2)Z, const. (3.6)
0

IFor the self-similar formulation of this region, the independent and

dependent variables are

=x, ii=(3.7)

(x, r; 8) F(; 8): u [E], v=- -F'], (3.8a)

p(x, r; 8) = -2 11(77; 6), (3.8b)

3T(x, r; 8) = k-2 *(17; 6),

i p(x, r; 8) = 2 J(0; (S), v (x, r; 8) = R K(; 6). (3.8c)

Introduction of (3.7) and (3.8) into (3.2) and (3.3) produces

+ F[L7} + 8{q 2(If-J)}] = 0, (3.9a)

I (11 -K) + 6{ 72 4 + F -. F}]' . (3.9b

The primes in (3.8) and (3.9) denote differentiation with respect to )7. The

centerline boundary conditions are

F, F' , .0, - -j as 77 - O. (3.10)

!0

In this self-similar formulation, (3.6) becomes

+ 81-J)]77 dr, = (1/2)Z. (3.11)

[3-2]
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The introduction of the pressure-integral function, A, defined byI T

A dn' , such that H = A', (3.12)*0
leads to the following self-similar boundary-value problem for the downstream

core region of the turbulent round jet:

3~ + F L)I+ 5 {nl2 (A -J)} = 0, (3.13a)

I [{(A' -K)-A + 5 {7 2 4 + F[~ V'} 0; (3.13b)

Fr F' , A.°, _o. -)_, as - 0; (3.14)

u + 8(A'-J) n dn = (1/2)Z. (3.15)

A more detailed examination of this self-similar downstream region is
facilitated with the introduction of the following asymptotic representations:

G(n; 6) G (i) + 6G (7) + ... , with G = F, A, t, J, K. (3.16)

3 Thus, the zeroth- and first-order boundary-value problems are

I A
J[F] d + F (3.17a)

i~ ~ IN] = 0:, o o

FofF',A , - O1 , WO)- B o as Y7-+ 0, (3.17c)

.1 I Fi ' 2
i0 W71)Y dn (1/2)Z; (3.171,

I
i [3-3]



?I 1° + oF X + r 01 ,]-=-[n'(Ao'-jo)] (3-8a
1* 0 011 L1
I FfLL 0 [171F F

[ A ';- K I -A 1 ] -- [ . o + F o X - V =o

F2

[I = A'K = 77 11- 01, (3.18b)

F1  , A t 0, 1 -+ B as 77 0, (3.18c)

,i di7 = - - (-Jo) 7 d-q.

jTO- (-,(3.18d)I0
To proceed, based on experiment and theory (as reported by Hinze 1975,

Schlichting 1979, and others), the zeroth-order approximation for the axial-

velocity function is taken to be

= 2 2  = B 1 (3.19a)
(i+ c 7 )2 (1 + k) '

2 2 1/2

where k = c ii Introduction of (3.19a) into (3.17d) yields (B0 /c) = (3Z)5 In what follows, it is taken that BO = 1, and, in turn, c = (3Z) - I" 2 The

farfield and centerline behaviors for this function are

r ' - 2-+ 0b as k -. ,(3.19b)

W770 (1-2k + 1..)s kla +k0. (3.19c)
I

The corresponding approximation for the streamfunction is

2

B0 71 k

Fo = 2( +7 2 ) = A0 (k with A= (3/2)Z: (3.20a)2 (1 + c 2 )7 (1+k) ' wt

Fo - o (1-k' + ... ) - Ao as k - o, (3.20b)

Fo -+ A0 k(l-k + ... ) -* 0 as k -+ 0. (3.20c)

(3-4]
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From (3.19) and (3.20), the zeroth-order radial-velocity function is

IFo B 0 7(1 -c 2'72) =_1 k' /2 (1-k)*

- 7 2(1 + c 27 2) 2 2c (1+k)2

3 - F - k'- (1-3k' + ... ) - 0 as k aD, (3.21b)

~-FJ-) - k- k (1-3k + ... ) -. 0 as k - 0. (3.21c)

3 The leading-order approximation for the shear-stress function, in turn, is

I = _ 0 77 1 k ' ).
0 7 7 2 1 12 3 2c (1 + k)(3.22a)

0 c- k 5 / 2 (1-3k - I + ... ) - 0 as k - c, (3.22b)

-0 _ kt/2 (1- 3k + ... ) -. 0 as k -0 0. (3.22c)

The experimental work of Wygnanski & Fiedler (1969) suggests the

i following approximations for Jo and K0 :

Sa 0  1

I = - 2 2 2 -ao 2 with 0 < a < 1: (3.23a)
(1 + c 27 ) (1 + k) 2 '

SJo - -a k- 2 (1-2k- 1 + .') - 0 as k -+ OD, (3.23b)

- -a (1-2k + ... ) -*-a0 as k - 0; (3.23c)

i o 1

Ko =- 2 2)2 -b 1 2' with 0 < b< a 0 1 i: (3.24a)(1 + c 0i (1 + k)

1 -2 -i

Ko 0 -b 0 k (1-2k + ... ) -a0as k-4, (3.24b)

U Ko -- b0 (1-2k + ... ) -b as k - . (3.24c)

I The evaluation of a. and b from experimental data is presented in § 6.

(3-5]



From (3.17b), it follows that

o = o Ek {(2k - (1+k)IL (3.25a)

-3bo 3/2 4 1
A -_ k- (1 - k + ) - 0 as k - , (3.25b)

X bo k ' 2 F 1)- 1 + 2k- + -- 0 as k --0. (3.25c)

1 Thus, the leading-order approximation for the pressure function is

0 2 1 k f 1 [,{( l+k)} (3+k)": (3.26a)

I_-_--- -2  20 -
0o 4 [1 - -k- + ...- 0 as k (3.26b)

n -- 2 - n(k-) - 3 + 6k + ... -4 t as k - 0 . (3.26c)

The logarithmic blow-up of the "models" for \o and 110 as k -. 0 is noted. No

I further consideration is given to the centerline blow-up, as the emphasis of

this paper is on the effect of the "models" for the pressure and normal

qstresses on the farfield behavior.

Now, the first-order approximation for the axial-velocity function isI taken to be

SI 1 2 with, = - (3/4)(2ao -bo) < 0 :(3.27a)I (1+k)

-(- 2k' ...) -0 ask -k0a, (3.27b)

-L -I B (1 - 2k + ...) - B as k - 0. (3.27c)

3
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The value of B is determined from the first-order momentum integral relation,

5 (3.18d), with B = 1. The corresponding streamfunction is

F, = A (l+k) ith A (9/8) (2a -b )Z < 0: (3.28a)
I11k 0 0

F A (1-k' + ).-. A as k - (3.28b)

F, -A A k(l-k + ... ) -- 0 as k -4 0. (3.28c)

The first-order radial-velocity function is

FL _ F' B 1 k I/ 2 (1-k )
[ FJ 2c ( -+k ) (3.29a)

£T-- - F1 - k j k (1- 3k + ... ) - 0 as k - x, (3.29b)

"j--- F] -- k' -2(1 3k + -0 as k - 0. (3.29c)

The resulting first-order approxlation for the shear-stress function is

'IkI+ W I, , J + '7 -J no. j

1, (l1+k) 2  1 +k ) '  "

-4- [ 4ao 1
/4 a 3(42a -2)h . 0 as k - 1, (3.30b)I 4c 1 - 3b( )

Lk" [bc n(k- -(2a, +3b )+ 2-(10a +3b )k + . 0 as k- 0.

(3.30c)

[3-7]



Here, the approximations for J1 and K, are taken to be

11

J = -a 2" with a = const. (to be specified): (3.31a)i(l+k)2

-' -
-i -a k 2 (l-2k + .) - 0 as k - x, (3.31b)

it -aI (1-2k + ...) - -a as k - 0; (3.31c)

K -b 1 , with b = const. (to be specified): (3.32a)
1 (1+k)2

-2 -I

- -b k (1-2k + ...)-0 as k- , (3.32b)II
K1 -bi (1-2k + ...) - -b as k -4 0. (3.32c)

From (3.18b), it is determined that, subject to the pertinent boundary

5 conditions,

kI /2 (1-k) + E +k)n - (3.33)

4c (1+k) 2  2c k (1+k)"

In turn,

A o (1-6k+k 2) + [b I ]f(:+k 4_ 1: (3.34a)
4 2) L k(1-4"-(lk) - - (14-k) -

A 3b _
I -. - --k (1 -9k 4 .....) - k (1 -- + ) - 0 as k - x (3.34b)

Ao  bI
m1 - -- (1 -9k + ... ) + -[#n(k ) -3 + 6k + . x - as k - 0. (3.34c

Higher-order solutions for the core-region flow quantities are not

considered here. It is noted, nevertheless, that a preliminary study of the

second-order boundary-value problems indicates that the farfield behavior of

the velocity solutions of this order is such that the momentum-integral

relation of (3.11) fails. This failure stems from the interaction of the3 core-region quantities with those of the intermediate region, analyzed in 4.

[3-8]



From the preceding developments, it is now possible to determine the

farfield behavior of the solutions in the limit of ri -+ D, 6 - 0, such that

(9 = 1/2 - 0(l). In this limit, k = c 272 = (1/3Z)69 2 -le ; and

SF F0 + 6F + ...

I -* [(3/2)Z - 6{(9/2)Z2e-2 + (9/8)(2a -b0 )Z + ... }+ 0(62)], (3.35a)i !~ ~ +~ 8 [J- ; 1 -+"

[fze + . (5(3.35b)
F I

- 6 2 [9 2 7/ )Z + . } 0(9/) (4oo Z - . ( ) , (3.35a)

iF'J JF. + J + "F'" +

61 /2 [ 3/2)Ze&' - 5{(27/2) 2 e-3 + (9/8) (2ao -b 0)Ze-1 + +(

(3.35c)

+6 +..1 _'/2 +.- ... }.. }]
- 2 [9a0z2e4 + + 0(6)], (3.36b)

K K0 + 6K + ...

5 52 [{9b Z20- + }+ 0(6)]3.6c

I 1 +I 8 + .

-6 62 Ift2 7/4)bo z 2o- + (9/8)z 2 02 + *.}+ 0(b)J (3.37)

I o-9
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4. THE DOWNSTREAM INTERMEDIATE REGION

The results of (3.35)-(3.37) indicate that, to ensure uniform validity,

a region exterior to the downstream core region is required. For this region,

designated, here, as the downstream intermediate region, the appropriate

scalings of the original independent and dependent variables are

1/2

xk = X, rL = R; (4.1)

2 3/2 Ao 5/2
*(X, R; 6) A x + o (xk r 8): U u V= -+

°  v (4.2a), =k k , Uk, = rk +V ,

I3

P(X, R; 8) = 6 k (xk, rk; ), (4.2b)

T (X, R; (5) 57/2 r (x r 6)

M(X, R; 8) = 53 k (x , rk; 6), N(X, R; 6) = 1) k P, r k; 6). (4.2c)

These variables are related to those of the core region through

I 1/ 2

Xk = x, r =r 6 r;

x A + ,with Ao = (3/2)Z: u 6 2u , /2

2 5 /2 2f 2 6 --- v

pp r=8/ t, 8g = z- (4.3)
L k' k k"

Introduction of (4.1) and (4.2) into (2.1) and (2.2) produces

k i = 0: u k a r (4 .4)
ax r :a r ar k r k

k 1+ k 1 k 1 k(4

A0 au Fu a U a rl )(r ir) 3 p
;7 _ + x = r I . -r,( . a

r k a r L -k aXk k rj + k k c) (4.b)

A02 rv k] + r2 a - k aa
2-- A +8_ ~-+ + +5--

Lk k C k r a (4.5b)
r k _

I4-
i [4-11
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A self-similar formulation of this intermediate region is sought through

5 the introduction of the following variables:

I = Xk, e = (rk /Xk); (4.6)

k (XI, ) V = _ [ - F , (4.7a)

;) -2 -e25

Pk.6) = H (6; 6) k nkAk(6; 6), (4.7b)P k(kr" kk

~~r (X ,r - 6)( * (6-6),
k k' k ' k

P 1 (XV. r ;) = J-2 (6; 6), V (X , r; 6) = K k (6; 6). (4.7c)k Jk( k) Uk k r k

The independent variables of the intermediate region are related to those of

i the core region by

= x k = x, 6 = (rk /x) = 1/ 2(r/x) = 6/277. (4.8)

The resulting self-similar axial- and radial-momentum equations are

j [fk+ e-- ] + e2 (AJk){+ 6{F i 1 =0, (4.9a)

o ~ 1+ + 2@ --+ A, [2-0

(4.9b)

Again, it is appropriate to introduce asymptotic representations for the

dependent variables, i.e.,

G(;3) Gko () + .... with G, = F k , A k , Jk' K (4.10)

Thus, the zeroth-order equations for the intermediate region are

[kO 6 L)] + LA J]o = o, (4.11a)

2

kO + = 0. (4.lb)

[4-2]



The solutions of (4.11) that match to those of the (farfield) core region are

ko ={Ae +:A 2A (4.12a)U
r [ : {-{A + 4A2 -4 -o 'A2 oO3,- (4.12b,c)

t -{0o9-  + t4ao-3bo A 2 0 - 3 + 4A>e-51 (4.13a)

+O Oe- 2+ 4ao A2 -4', K k O 2 + 4b A2 e1, with (2 -' A

kO O 0 0 O00 0'

I (4.13b,c)

H k-0 2 + 3b 0 A e- . (4.14)

Recall that Ao = (3/2)Z, A, = -(9/8)(2a -b )Z ..... Higher-order solutions

for this intermediate region are not pursued here.

I In the limit of e -+ m. 6 -+ 0, such that = 61/2 e 0(l), the variables

of the intermediate region have the following behaviors:

aF + [- .< 2.. + (4.15a)

[ -k ] [ + (/ 0o] + ... +-0() (4.15b)

Ik - -~ 0  6 / [(1/4)A0  + 0(6)];(41c

k O1/2 -(1/)A +0 ) (4.16a)

i"k ,o + .. 2 +0(b) (4.16b)

Kk IKko + IV 0 2 + 0(5)4]

n k rlko + -*56P 2 +00)] (4.17)

£43



5. THE DOWNSTREAM EXTERIOR REGION

The uniformly valid characterization of the farfield development of the

turbulent round jet is completed through the introduction of the downstream

exterior region, wherein the appropriate variables are

x = 6X, r 6R; (5.1)
2 2

X, R; 5) = 1P (x,, r ; 8): U 62 u V =6 2v (5.2a)

PX, R; 5) = 4 (x, r.; 6(5.2b)
I8S S S

T(X, R; 6) = 64 T(x , r; 6),

M(X, R; 6) = 4 (x,, r.; 6), N(X, R; 6) = 64V (x , r ;6). (5.2c)

In this region, the vorticity is

'aX R; 6) =r 3 "i (5.3)
=(,R; 6 (71 - R w (x , r; 8)v - - r

In terms of these exterior-region variables, the equations of motion are

au a(r v) 1 1S + = 0: uV (54)
ax r cr s r - ' - r ax;

SS S S S

7 = r " (5.5a)
xav rC- V aOar v a-,

lu . + v T, + VT . K -o + a-r- Ir c) ,

Taking this exterior region to be an irrotational one, (5.3) becomes

S 0. (5.6)
as ] X + r S S

(5-11



The boundary conditions for these equations are

usv, ps, r , , v -+ 0 as r -4 (M. (5.7)

I Again, a self-similar formulation is sought for this region in terms of

the following variables:

= x , 1 = (r /x ); (5.8)

(x ,r ;5) = F ( ; :

I F' F
, v. - ,

-2

_ 2 (i+ l F F (5.9a)
Is L L i+ 2) !s '1,

S6) = -2 ( 6) 2A 6) (5.9b)

I (x , r ;) = 2 A'<6)

T (x r 2) 4?

(x, r. ; 6) 2 J R~ 6). p- (x ,r ; ) 2 K ((,; 6). (5.9c)

Note that , = (r /x ) = (R/X) = 6'/2 0 677.

3 In turn, (5.5) and (5.6), subject to (5.7), can be written as

3 + ~i '}+ [A..' - J]+ x~2} 0, (5.10a)

I 1.{L'~ ~- K]+ [72. s)}+ + [7.][..F}] 0

2 ' = 0. (5.11)

I
5 [5-2]
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An asymptotic analysis of this region, in terms of expansion of the formI
G;6) Go( .) + .., with G = F , A , , J , K , (5.12)

from a consideration of (5.10) and (5.11), leads to

1o 2 roL12 51a

F' 1 rF

FA0 2 1/2so - F' Ao  (I [1 + ,+ 2 1 5.13a)

Fo F 0  o =-A (5.14a)

F' A2 + A[ 2] (5.14b)

3 SO K0 ] = - F' = - " 2 [1+ I+ 2f (5.14c)

5 The results for the velocity functions of (5.13) are consistent with those

reported by Landau & Lifshitz (1959). The results of (5.14) represent new

information concerning the behavior of the stress functions in the farfield.

Higher-order solutions for the exterior region are not pursued here.

I The farfield (R -' c) behaviors of these zeroth-order functions are

F L A r + ... + (5.15a)so A 1  -

S2 1 2 - (5.15b)

F so F' - A0 ' 1 [ + + ... -. 0, (5.15c)

I 1 2 +

so 4 0A 2 2  [ + , (5.16a)

J.i A 2 -2 [1 . ) O (5.16b)

IK] -1 0- 2 1 ...2 K_ 0. (5.16c)

1 [5-31



It is noted that the behaviors of the pressure and normal-stress functions are3
= A ' - 2 (1-2 U +- 2 (1 + .. )

-so 0 0 "" 0  o ( + ... )0K o •1 )

I if ( O o),0 (2no o  A 2A, i.e., (n +ao-.3 )= 0. (5.17)

The nearfield (R - 0) behaviors of these functions are

S 1 A0o (5.18a)

3 N 2 Ao 1- ( (2 + . - Ao , (5.18b)

Sso F A. < - (2 + . 1 (5.18c)I4
so A I- 2 + (5.19a)

I [o - - L Ao 2 - 2 [ - k (5.19b)

so - K Sol - - Ao - 2 - ... - - .(5.19c)

3 The behaviors of the pressure and normal-stress functions are

A' IT -2 + - (1 + K2 o +I sO =Ao -- o t ( ... , - - (Id (+..),K -- L' -(i (+. ),

'so ' 0 so 0 s 0

if n0 = #o and (2M O - lo) = Ao . (5.20)

3 It is seen that these functions (i) satisfy the boundary conditions at

infinity, and (ii) match to the farfield behaviors of the intermediate-region3 functions.

I
I
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6. RESULTS AND DISCUSSION3
The experimental data for the centerline velocity as a function of axial5 distance are expressed, in the present notation, as

6£ t= C- 2C ' with C = const. (determined experimentally) ,U i (i-Xio) / (2Bj) (6.1)

i.e., the centerline velocity is inversely proportional to the axial distance

in the self-similar downstream zone. Hinze & Van der Hegge Zijnen (1949),
hereinafter denoted as H-VdHZ, found C - 5.9, (2C)-  0.085 for 20 < X < 100;

Wygnanski & Fiedler (1969), denoted as W-F, found C A 5.4, (2C) I 0.093 for

50 < X < 180. In the self-similar analysis of § 3, it is found that the

centerline velocity is!
-1

UL [B0 + 6B .. ,

with k = 5X, Bo = 1, B, =-(3/4)(2a 0 -b o ) ..... (6.2)

i From the W-F data, (8B ) - 0.079 (as is shown later in this section). A

comparison of (6.1) and (6.2) indicates that, if terms of 0(6 2 ) are neglected,

(2C) 6-[1 + (B i)] and/or 5 - (2C)-[1 + (B1)]:

6 s 0.086 for (2C) 1 0.093, (SB I - 0.079. (6.3)

For the purpose of consistency only, hereafter, W-F is employed as the basis

for comparison.

The axial-velocity-distribution data are (most often) presented as

* U 1 U ( ";L)
U 2 2P 2 = O L)E

UL (1 + L2 2) 2  UCOE

with = (R/X), L = const.(determined experimentally). (6.4)

The measurements of H-VdHZ give L 2 63.8; W-F find L2 - 57.8. When terms of

[6-1)



3
0(62) are neglected, the core-region analysis of § 3 shows that

U = U_ A, , with 7 = 6 (R/X), c = (3Z) (6.5)
It,. (1 + C2 n7 2)

A comparison of (6.4) and (6.5) yields

L2 v (3Z62 ) I and/or Z Z (36 2 L2)I

Z %, 0.78, c = (3Z) - 1 / 2 v 0.65, Ao = (3/2)Z 1.2

for 6 - 0.086, L2 - 57.8. (6.6)

The farfield axial-velocity distribution determined by the zeroth-order
2 2 -1I exterior-region analysis of § 5, with (1/2)6Ao = (4L2) -

, is

* U, _ _ (41,2 )_- I

U V- = ( R" L)Ut- (1 + <2)1/2 UEXT('L'

with (4L2) - I  0.00433 for L2 A 57.8. (6.7)

5 In figure 2a, UCORE R; L), given, by (6.4), is compared with the data of W-F.

Not surprisingly, this representation compares well with the data. Figure 2b

shows UCORE R; L) and UEXT K; L) of (6.4) and (6.7), respectively, as well as

INTE R (; L), the intermediate-region representation. Since the data of W-F

(and others) do not extend to the exterior region, as defined in this paper,

3 it is not possible to make a farfield comparison.

When terms of 0(6 2 ) are neglected, the core-region radial-velocity

distribution can be expressed as

• V 4 (I-L 22
V " --- VC(R( (2; L). (6.8)

Fc- 2 ( L222) COREI UL "2(1 + L2 2)

The zeroth-order exterior-region radial-velocity distribution is given by

• V (4L 2)1 [(l+( 2)1/2 + V K; L). (6.9)

Ut, - 2 ) t/2 EXT

Figure 3a compares V R ;( L), of (6.8), with the data of W-F. Again, the

comparison is good. The solutions V CORE; L) V E T R; L), andV (C; L

3 [6-2]
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I.
are shown in figure 3b.£

Since, for the core region,

, (v') -2T=- 2 =-(u'v ) =6r=6

U.

5 the pertinent zeroth-order representation for the shear-stress distribution is

I = A0- R; L). (6.10)
U 2 2 ( L2 (2 )3 COREU 2(1 + L2<) coIL

This is essentially the relation for the shear-stress distribution employed by3 Hinze(L975). For the exterior region,

3I (u'v') ' 4 -. 2
T UT =V = (u ' ), = 4, C 2-

II ~2 s $

U

1" and the corresponding zeroth-order shear-stress distribution is

T- ' 2 -2 /2

- (4L ) [(1 + < ) + i] +

2 2 EXT
] UL  11+ < )

5 with (42 ) 0.0000187 for L2 - 57.8. (6.11)

In figure 4a, fCORE ((; L), of (6.10), is compared with the data of W-F, with

good results. Figure 4b displays the solutions tCORE (; L), EXT(; L), and
4€ 1 ;L).
IITER

For the core region, the normal-stress components are

I2

i'i
( '- 2 ,2 -2
(u

N=  , ) = (V ) = 6p=6 J ,

U.

I66
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I where, at the very least, the zeroth-order approximations/models, Jof and Ko,

employed in the analysis presented in § 3, require the specification of the

centerline values, ao and bo, respectively. The data of W-F, in conjunction

with these zeroth-order models, lead to the normal-stress distributions

1/2 (6 a 1/2 1 (6bo ) 1/2
(u, 2) 6 0)( 2)] ____0)

UL (+L2 2 UL (+L )

with (Oa ) /2 0.29, (5b)/2 ) 0.25. (6.12)

' From (6.12), (a o ) A 0.084, (Obo ) 0 0.063: ao 0 0.98, b 0 0.73 for 6 0 0.086,

and, in turn,I
(6B1) v -0.079: B -0.92 for 6 A 0.086,

(6AI) = 0 (6BI) A -0.095: AI i -1.1 for 6 v 0.086, Z - 0.78. (6.13)

The evaluation of (6B ) follows directly from the normal-stress data/model

comparison, without the specification of 6. Thus, it is consistent to employ

(6B) -0.079 to evaluate 6, as is done in (6.3).
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ABSTRACT

This report deals with three major computational topics associated with the numerical simulation of

3 circular-jet flows. The first is the development of a theory surrounding the construction of hybrid differnce

methods that preserve weak but persistent unsteady features of the flow. The second is a theoretical and numeri-

3cal study of a classic plane jet problem as a means of deducing the nature of far-field boundary conditions. The

third is a description of the algorithms underlying the "dual variable" method for the numerical simulation of

I three dimensional, incompressible flows.
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3 CHAPTER 1

WEIGHT SELECTION PROCEDURES FOR HYBRID DIFFERENCE METHODS

1. Introduction

I To preserve weak but persistent features of an unsteady flow (such as the shedding of certain vortex struc-

3 tures) during numerical simulations it is necessary to use difference methods with small numerical dissip.tion.

Unfortunately, in the absence (or near absence) of naturally occurring dissipative mechanisms, it is precisely the

3 numerical viscosity that stabilizes the method. Thus, it is important to examine the prospect of constructing

methods that are robust (with respect to their stability characteristics), but not uniformly overly dissipative.

3 A conceptually simple way to attentuate the dissipative effects of a difference method is to create a hybrid

method by blending the given method with a less robust but more accurate one. The idea is to design the

weights used in the blending process so that in regions where little numerical dissipation is needed, the accurate

3 method is dominant, whereas in regions requiring significant numerical dissipation to preserve stability (or cer-

tain qualitative features of the solution such as monotonicity), the original scheme prevails. Such self-adjusting

methods in computational fluid dynamics were apparently first considered by Harten and Zwas [1972], and a

3 comprehensive account of the steps involved in the design of these methods is contained in the thesis of Wilders

[1983].

5 Hybridization is also the notion behind the Flux Corrected Transport (FCT) schemes of Boris and Book

[1973, 1976] and Book, Boris, and Hain [1975]. The FCT schemes, originally developed for one space dimen-

sion, were given a nontrivial multidimensional generalization by Zalasek [1979]. He also showed that they

5 could be interpreted in terms of convex combinations of flux terms related to low-order (strongly dissipative)

and high-order (marginally dissipative) difference methods. The FCT weight selection process uses a "monotoni-

3 city constraint" on the numerical solution and has a particularly simple formulation in one dimension.

Specifically, the weights are determined so as to maximize the effect of the high-order method's flux terms, sub-

I ject to the condition that over any timestep no extrema are introduced that would not also be present in the

3 low-order solution at the new time. This implies that the total variation of the hybrid grid function does rt

exceed that of the low-order grid function. The same idea has been used to define t'al-variation-diminishing

I
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(TVD) schemes (Harten [19831, [19841).

I The monotonicity constraint is consistent with the behavior of a solution for the one-dimensional scalar

3 convection equation (the total variation of such a solution does not increase in time), and in this case the FCT

algorithms perform impressively. However, the situation is different for systems of nonlinear conservation laws.

According to Woodward and Colella [19841:

Then no such monotonicity constraint is implied by the differential
equations, and the use of such a constraint can lead to difficulties.
In particular, a smooth region with strong gradients can be turned
into a sequence of discontinuous jumps, with the appearance of a3 staircase.

The unsuitability of a TVD condition in the design of difference methods for multidimensional quasilinear sys-

I tems is also indicated by a result of Rauch [1986]. There it is shown that unless the commutators of all of the

3 Jacobian matrices appearing in the system vanish, no multiple of the W1' seminorm of the initial condition can

bound this seminorm at a later time. Thus, it is unlikely that a numerical solution with a TV. oroperty will

3 converge to a solution of the original system.

In view of these difficulties with the TVD condition, it is appropriate to consider other weight selection

criteria. One such alternative is based on the ability of the hybrid method to conserve (or nearly conserve) the

3 discrete energy of the numerical solution that it produces.

In this chapter we study such hybrid difference methods for the linear convection equation,

I u +a(x)u,, =O,Ox !t,5t 0, (1.1)

3 subject to the initial condition,

i~ (x ,0) = WWx) ( 1.2)

We assume that WE C'(--ooo) and that a(x) is continuous and satisfies .t > a(x) > 0 for some constant g

3 Since a hydrid method is obtained by forming weighted combinations of the differences quotients that define two

consistent methods, our main concern is with the selections of the weight used in the blending process.

I
2. The Continuous Energy

I
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Since we shall b.e our --eight selection principles on the manner in which the energy of a hybrid method

conforms to that of (1.1), we begin with an examination of the latter.

We first note that by using the method of characteristics, we may write the exact solution of (1.1), (1.2) as

u(x, 0 = N(y(x, 0)), (2.1)

I where y = y (x, t) satisfies the equation

X

- d = t. (2.2)

3 If we define the energy of (1.1) as

0

then it is clear from (2.1), that I(t) is bounded when iy is. However, it is also possible for I(t) to remain

bounded when V is not bounded.U
d/2

Theorem 2.1: If N >_ 0, then 0.U
Proof:

1t-u2x=2 
1 t

= (u2)d = 2f uu, dx = -2f a(x)uu,
0 0.

= -2f a(x),(y)V'(y)y. dx =-2f a(y),W(y)V,(y) dy <.0.

0 0

3 Difference methods for (1.1), (1.2) are frequently analyzed under the assumption that the corresponding

numerical solution is periodic in the discrete space variable. Therefore, it is of interest to know under what con-

I ditions this is true of u(x, t).

Theorem (2.2): Let N be an t-periodic function. Then u is t-periodic in x, if and only if a is t-periodic.

5 Proof: If u(x + t, t) = u(x, t), then by (2.1) y(x +t, t) = y(x, t)+ L Thus, by (2.2)

y(,.4 a y(z.t ) a a , a

I
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and so

I iz++s +1j 
as

Differentiating this equation with respect to t, we getI 1. 1 )
0 : , a~~t) a(y)

I Since y, = -a(y) 0, we have a(y+t) = a(y).

3 Conversely, if a (s +t) = a (s), then

x a

is independent of x and the above steps are reversible.

5 Now we assume that V and a are t-periodic. In general the energy I(t) is not conserved even though

u (., t) is periodic. However, with regard to the weighted energy

J( IU J~t)[ u2(x,t )

gt-" a(x)

we see that

It u fa (2.3)

I

so that this quantity is conserved. Moreover, since J(0) = J(t) _ pt-l(t) , it follows that in the case of periodi-

city, 1(t) is bounded by [1f a2a dx I".

I
3. Hybrid Methods

I
I



I5-
* -5-

Consider a rectangular mesh with uniform x and t spacings h and r. Let v be a mesh function

I whose value at the mesh point (jh, mT) is denoted by vj(m). When no confusion can arise we shall omit writ-

ing the dependence on j and/or m.

For any such function v we define the familiar x -directional differences:

I S1±v = viti,

A.,v = (vj+l - vj)Ih

V, v = (vj - vj-,)/h

A. v = (vj+l - vj-l)/2h

l = (vj+1 - 2vj + vjl)/h

as well as analogous differences in the t-direction. We also note the following useful identities for any mesh

functions u and v:

V,(uA.v) = uszv + (V.u)Vxv , (3.1)

V. (uv) = u V v + (S-v)Vu , (3.2)

2vV,,v = V_,v 2 + h(V.v) 2 
, (3.3)Ian

3 2v A, v =A, v 2 - -r(At V) 2 . (3.4)

With this notation we consider the following difference equation for (1.1):

A, v + cz[(1 - O)V v + 0 A~v] = 0 , (3.5)

I where ax, (m) = caj = a (jh) and 0 is a mesh function of weights. Equation (3.5) defines a consistent explicit

I method for any choice of 0 and reduces to the "upwind" or "centered" difference method when 0j(m) is respec-

tively 0 or 1.

I To study the energy of (3.5) (and close the system of difference equations), we assume that v is L-

I
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3 periodic in j, i.e., v+L (m) = v) (m). In view of Theortm 2.2 this assumption is certainly consistent with t.-

periodicity in a and W when h = t/L. Now we observe that (3.5) may be rewritten as

A,v+ a(V v + 1Oh 8'v)= 0. (3.6)

I In this form the equation clearly reveals its "antidiffusive" nature when 9 > 0. If we use (3.1) to

transform the term -L 8,v and then multiply the result by 2via, we get,
2 v

- + 2v V,, v + hv V. (OA, v) - h (V, O)v (V, v) = 0. (3.7)

Next we use (3.,4), (3.3) and (3.2) to transform the first three terms of (3.7). Upon rearranging, we have

A, v 2

- + V1(v2 + h~vA~v) (3.8)

aI
T (A' V)2 + hS (OAv ) Vv - h (V V)

2 + h (V,,O)v (V.v ) .

We add hv(Vv) 2 to both sides of (3.8), where v is a constant and observe that S1 (OA,v)V,,v = (S0)(V,,v) 2.

I In this way we obtain

3AV + V1 (V2 + hOvAv) + hv(V.v) 2  (3.9)

I (Afv 2 _ h(l-v-SO)(Vzv) 2 + h(VO)(vV.v

I Letting

3 b = hV1 0 , (3.10)

and

Q = (A,v)2 _ h( - v - S-O)(vv) 2 
, (3.11)

we see that
I AtV 2

, + V(vz+ hOvAv ) + hv(V v) 2 = Q + bhvV, v. (3.12)
aI
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If we define the weighted energy of the method (3.5) as

-j--- hi

then under suitable conditions, we can use (3.12) to establish the bounded nature of j and therefore also the

I boundedness of the energy

3 1(m) =[,V,2(M)hj

3 These "suitable conditions" lead directly to various algorithms for the weights 0.

4. Global Weights

We assume that 0 is independent of the space index j. In this case b = 0, and if we choose v = 0, then

(3.12) reduces to

A, v 2

A- + V(v 2 + hOvAv) = Q , (4.1)

where

Q = .L (A, v)2 - h (1 - 0)(V. v) 2
. (4.2)

* a

If we multiply (4.1) by hr, sum over 05< j < L, 0 < n 5 m, use the periodicity of v, and note that

V2 h' = j 2(m+l) - j 2(0),

I we see that

3 J 2(m+l) = j 2(0) + I Qh . (4.3)
j.

3 Hence the weighted energy is conserved if

Q Qh'r = 0. (4.4
I j,

To enforce (4.4) we observe that by (3.6),

I
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Q/h = ,[V,v + I OhSxv 2 - (1 - O)(V.v)2 , (4.5)
2

where X T ret/h is the mesh function of Courant numbers. Thus

I T=Qh=(A 02+BO+C)h2,
j

where

A= E 2
4

B = P 8z,2v + Vv]V"v, (4.6)

C = X 1-l)(Vv) 2 .

JI
Therefore, (4.4) follows if 0 is a real root of the quadratic equation.

I q2(0)--A 02+BO+C =0. (4.7)

If the "Courant condition", X < I holds, then

q2(0) = (X-)(V.v) 2 S 0I
and

I q2(1) = X (2V)2 > .

I Hence (4.7) has a root in the interval [0,1].

If we insist that 0 also be independent of the time index m (i.e. 0 = constant), then we cannot in general

satisfy (4.4). However, if we write (4.5) in the form

Q/h = X[(1 - -2)Vv + _LA"v]2 (1-0)(V"V)2

3 let A = gi t/h, and use the elementary inequality (a+b) 2 ! 2(a2+b2), then we do have

Q/h < A[(1 - -20)V v + -62A, v] 2 - (1-0)(Vv) 2

I [2A(1-4 0 ) 2 + 0 - I](V, V)2 + I2A02(A. v)2•

I
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Therefore, using the periodicity of v, we see that

Qhr 5 q(O) .(V v) 2h2,I
where

I q1(0) m A0 2 + (1-2A)0 + 2A - 1. (4.8)

From (4.3) we conclude that if 0 is a real root of q1(0) = 0, then the weighted energy, is bounded for all m.

Note that if A < L then q1 (0) < 0 < q (1), and so there is a root in [0,1].I2'
We summarize our findings as follows.

I1
Theorem 4.1: If A = grh <- and

0 = 2A - 1 + (1-4A)'i (4.9)
2A

5 then the weighted energy J of the hybrid method (3.5) satisfies j(m) < j 0) for all m > 0.

I Theorem 4.2: If X = Ta/h S 1, and G(m) is the root of

A (m)02 + B (m) 0 + C(m) =0, (4.10)

lying in [0,1], where

h2  )j M82V M)2

B(m) = _,\ (mvj (m) + V. v,(m)] Vvj (m), (4.11)I

C(m) = (X,(m) - 1XV. vj(m)) 2,IL I

then the weighted energy of (3.5) is conserved, i.e,

J(m)=J(0) for allm >0.

I
I
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S. Local Weights

We now allow 0 to depend on both j and m. To bound the weighted energy in this case we use a tech-

* nique of Ladyzhenskaya [19851.

result isWe choose v > 0, multiply (3.12) by ht, and sum over 0 ! j 5 L, 0:< n L5 m. Upon simplification, the

j 2(m+l)+hv (V"v) 2h'r =j 2(0) + Qh-r+ h v bvVv hr, (5.1)

3 where b and Q are given by (3.10) and (3.11). Now assume that Ib 1 !5 g and

, Qhr <0. (5.2)I j,
Then, 

2 M+1
T J2 (m+l) + hv , (V v) 2hr 5 J2(0) + h. v IvVv Ih'r (5.3)

j.,t j,

UApplying Cauchy's inequality to the last term of (5.3), we have

3 J2(m+l) + hv (Vv)2h'r < 12((,/+ h .(y v 2hr)4'( " (Vy v)2ht)4 . (5.4)
j.n J., j.M

3 But, for any f, g _ 0, v > 0, one has the inequality

hgf<g -g 2+ hA2 fl
2 2v

and it follows from (5.4) that

j 2(M +1) + h V 1 (V",V )2 h'r 5 j 2(0) + h~ 11 v 2ht 55

j,2 2v (5)

2v 2

]2(0) +. ±J yj
2 (nft

2v

Let

I
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3 y(m)= max J(n).

Then the right side of (5.5) is majorized by

y(m+l) J(O) + hp2 y2(M+l)(M+l),t

Assuming that (m+l),r : tj, we deduce that

I 1 2(m+l) + . (Vv)2hr _ y(m+l)i(0) + y2(m+I) (5.6)
2 2v

I This inequality in turn implies that

S(I - hj )y(m+l)<5J(0).

Therefore, if h h0 and t 1 
<  then

Sy (m +1) ! 2(0). (5.7)

5 Now we fix t < c and divide the interval [0, t I into a finite number of sub-intervals, each of whose

lengths does not exceed V Then the estimate (5.7) applies on each sub-interval, and we have proven the

following theorem. 
h 0l 3

Theorem 5.: Let h < h0 , h IV,01 < i. and v > 0. If (5.2) holds, then for any t < oo, there is a number K(t)

such that for all m satisfying m'r 5 t,

1 1(m) !5 K(t) 1(0).

* 0
In view of (3.11) and (3.6), it is clear that (5.2) reduces to an equality if

. 8 v) = (1 -v-S -0)"(V"v ), (5.8)

where again X = To/h. This is a system of nonlinear difference equations for 0 which is to hold for

j 0, • • ,L. However, due to the L-periodicity of X and v, it suffices to apply it for j = 1, • • • ,L and

take 0o = 0,.S



1 -12-

We now examine circumstances under which (5.8) yields a scheme (3.5) that is "total-variation diminish-

3 ing" (TVD). Recall that the total-variation of a L-periodic mesh function v may be defined as

TV(v) N E IV~vk I h,

k=1

and the difference method

vj(m+l) = k ckvj+k(m) (5.9)
k

is TVD if TV(v (m+1)) < TV(v(m)).

IWe consider solutions of (5.8) that satisfy3 1
I-v_0 ._> 1-v--- ,j = 1, ,L. (5.10)

XXj
Note that if Xj < 1, then (5.10) admits the possibility of negative weights.

Theorem 5.2: If the weights 0j satisfy (5.8) and (5.10), then (3.5) is TVD.

5Proof: According to (5.8), we have

A, v = --ctk XT(1 - v - 0i_1)V vj .

ITherefore,
vj(m+l) = [1 - X4'(1 - v - 0-1)" ]v,(m) + X'(1 - V -

If (5.10) holds, then vj(m+1) is a convex combination of vi(m) and vj.l.(m), and it follows from a result of Lax

I (See Harten [19841) that (3.5) is TVD.

It is worth noting that the above proof also shows that

I rin [vj 1(m),vj (m)] vj (m+1) 5 max [vj_(m),vj (m)1.

3 Therefore, under the hypothesis of Theorem 5.2, if v(m) is monotone on the index set jo, 1J, then

v(m+1) is monotone on j0+1, j..I
I
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The difficulties of solving system (5.8) may be avoided if we consider instead the uncoupled equations,

v + -L-82 v) = (I - 0)%V"v. (5.11)

All solutions of these equations are, of course, contained in the solutions of the quadratics,

3 A 02+ B 0+ C =0, (5.12)

3where

A+ h2X(8' 2v)2/4,

I = h X(V. v X8.v) + (V. v)2  (5.13)

C (X - 1)(V, v) 2.

If we determine the weights using (5.11), then we have no guarantee that Theorem 5.1 holds. However, if

3 we have a solution of (5.11) that also satisfies

1_a0> I-2 , (5.14)

then as in the proof of Theorem 5.2 we may again show that the resulting scheme is TVD and monotone.

Theorem 5.3: If X s 1, then there is a solution of (5.11) satisfying (5.14). Consequently the corresponding

difference method is TVD and monotone.

j Proof. If Vv = 0, then we can take 0 = 0. If Vv 0, and we write (5.11) in the form

xl (l + P 0) = (I - o)"'

where p = h8,,Zv/(2V.,v), then it is easy to see (Figure 1) that (5.11) has a solution 0 < 0 < 1 ifp >_ -1 while if
1

p <-1, then (5.11) has a solution 1 - - <0 _ 0.

0N
U
I
!



~'I. -14.

II I

I
I
N
I
I

I. S

I '~ )~cJ+~e),k<o

I
I
I
I
a

Figure 1. Solutions of (5.11)
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6. Numerical Experiments

IUsing the results of the previous sections, we can formulate three algorithms for the determination of the

3 weights that appear in (3.5). These algorithms, labeled Algorithms 1, 2 and 3 in increasing order of sophistica-

tion, are as follows.

5 Algorithm 1 (Theorem 4.1):

1. Choose T < h/2i.

2. A =.th.

3 0 = [2A - 1 + (1-4A 2)"/]/2A.

IAlgorithm 2 (Theorem 4.2):

1. Choose 5 < hI.

3 2. For m =0, 1,

3 Compute A (m), B (m), C(m) by (4.11).

5 Solve A(m)0 2 + B(m)O + C(m) = 0 for 0 E [0, 1].

Algorithm 3 (Theorem 5.3)

1i' 1. Choose t < h/t.

3 2. Form =0, 1, .

i Forj = 0 ..... L.

X = ta/h

Compute A, B, C by (5.13).

I Solve A02 + 80 + C = 0 for 0 E (1-1/X, 1].

3 These three algorithms were used to determine the weights in a series of numerical simulations of the

square wave test problems given in Boris and Book [1973]. For this problem we have a(x) - .01 and h = .01.

If we take g = .01, then the restrictions on T imposed by the three algorithms are all satisfied if T = .2. This is

I
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significantly beneath the Courant number stability limit of T = 1 that applies to the pure upwind scheme (0 0).

Consequently, as time progresses, this scheme will drastically "smear" the shape of the convected wave. We

note that the "exact solution" of the problem is

u(x, t) = (x - .Olt) , where

2 if n _<x <_n +.2,n =0, ±,+2,
-T otherwise.

3 The results of the numerical experiments are shown in Figure 2 after 800 time steps (t = 160). For com-

parison, the well known (and highly dissipative) "upwind" solution is also included. The numerical solutions are

Isnown supermposed on the exact solution. It is obvious that all three algorithms dramatically reduce the

numerical dissipation of the upwind scheme. Moreover, the dispersive "ripples" of Algorithm 1 are substantially

attenuated by Algorithm 2, and completely eliminated by Algorithm 3.I
I
!
I
I
I
U
I
I
I
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UpwindSoln.Algorithm 
1

UpwindSoin.Soin. m

Algorithm 2 Algorithm 35Soin. Soin.

U Figure 2. Hybrid Solutions.
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5CHAPTER 2

THEORETICAL AND NUMERICAL STUDIES OF A PLANE JET

1. Introduction

I The specification of boundary conditions for the numerical computations of free-jet development presents

many difficulties. The ideal configuration is that of a jet discharging into an unbounded domain. However,

most numerical approaches require that the problem be transformed into a pseudo boundary-value problem on

3 the domain of the computational grid. Thus it is necessary to impose far-field conditions on certain artifically

introduced boundaries.I
A typical situation is shown in Figure 1. The dashed lines represent the pseudo boundaries in the quarter

3 plane. Of the variety of conditions tested, specification of the pressure on these boundaries appears to yield the

most realistic behavior of the numerical solution. Appropriate pressure distributions may be obtained by assum-

ing that the far-field conditions are approximately those of related model problems for which analytical solutions

3 are known. For example, a linear distribution results from a Poiseuille flow-type assumption. Another possibil-

ity, which is the subject of this chapter, is to use the pressure field corresponding to irrotational flow of a jet

I with free stream lines. This is a classic problem of a type first considered by Helmholtz [1868] for the flow out

of a slot (plane jet). Its solution has been reproduced in many hydrodynamics texts (see, for example, Milne-

I Thompson [1955]). The solution technique uses a sequence of Schwarz-Christoffel transformations to obtain an

implicit representation of the complex potential of the motion. Bernoulli's theorem may then be employed to

relate the far-field pressure on streamlines within the jet to the known pressure at infinity. In the next section of

3 the Chapter we rederive the solution in a form suitable for numerical computation. Then we utilize the resulting

exact far-field boundary condition to provide a setting of a problem that can be studied numerically.I
2. The Plane Jet

Under certain simplifying assumptions, the motion of a plane jet issuing from an aperature in an infinitely

long wall may be analytically determined. In x-y geometry, the assumptions are that the motion is steady.

inviscid, irrotational and incompressible.

I
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Figure 1. Problem Geometry.

With these assumptions, it is known that there is a velocity potential and a stream function i such that the

I velocity field (u ,v) is given by

Su =Y (2.1)

m
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S= - = -2.(2.2)

5 Moreover, since 0 and V satisfy the Cauchy-Riemann equations, they form the real ad imaginary parts of an

analytic function of a complex variable z. Thus if z = x + iy, then

O(xy) + i W(x,y) - w, (2.3)

3 where w is some analytic function of z. The function w is called the complex potential of the motion. Clearly,

the determination of w constitutes the solution of the problem.

The geometry of the jet problem in the complex z -plane is shown in Figure 2. There is symmetry about

3 the streamline EF.
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It is also assumed that the aperature width B'B 2a and that the uniform speed of the jet at C'C is U.

5 The curve ABC is a streamline of the flow and in particular the portion BC is a free streamline. This means

that on BC (but not necessarily on AB) the speed q = (u2+v 2)16 is equal to the constant U. The same is true of

I the curve A'B'C'. Since the flow is inviscid, it is possible for the fluid outside the jet to remain at rest (i.e. q is

discontinuous across the free stream lines). If a is the (unknown) coefficient of contraction, i.e. a = C'C/2a,

then the efflux at C C is 2aaU. We now examine the consequences of these assumptions in the w -plane.

Since V is arbitrary up to an added constant, we can take W = 0 as EF. Next we note that on C'C,

= v = -U. Thus, if we denote the values of W at C' and C by W, and W2 respectively, we have

(2 - Wil)/2aa = -U .

I But the conditions at E and the symmetry imply that W1 = -W 2. Therefore, on the streamline A'B'C',

W = xV1 = aaU and on ABC, W = W2 = --aaU. Finally, we take 0=0 at B (and B'). The condition 4O = -v = U

at C implies that € = --c at C (and C'). Evidently, € = cc at A (and A'). This yields the situation shown in

Figure 3.

Next we observe that

dzw dz - (4 +w)- (-u+iv)-

3 =-(U-iv)- = -1/-U,

5where u) = u-iv is the complex velocity. If we write this in polar form as

U=q e- '8

then

-U dz U ee, . (2.4)
dw u q

3 Note that u+iv = qe 'e so that q is the magnitude (speed) and 0 the direction of the velocity vector. Now we

determine how the streamlines A'B'C' and ABC transform in the 4 plane. We see that:

A'B" -- =Uq O<q <_U.

I B'C' -4,=e' 0 
, 0> -i2

I
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CB = e e ---- 0>-
2

BA - =-Ulq , U >q >0.

I Thus we have the situation shown in Figure 4.

3 If we let

Q -log t = log- + io, (2.5)

q

3 it follows from Figure 3, that in the Q-plane the streamlines of Figure 2 correspond to the curves shown in Fig

I
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It remains to devise Schwarz-Christoffel ransformations that map respectively the interior of the

"polygons" A'B 'C*CBA shown in Figures 3 and 5 onto the upper half of the complex C-plane This is easily done

I
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ising the theory of such transformations (See Milne-Thompson [1955, ch. 10]). These transformations may be

constructed to produce the configuration of Figure 6.

I
I
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I -

Figure 6. -plane.

They are explicitly given by the formulas,

Iw =f ( = 2oaU log ioaU (2.6)

land

Q = g() cosh-' - in. (2.7)

Since in = log (-1), we may write (2.7) as

log (-U- -) = log [+(V1I) I - log (-1)

i = log [-W-I)"1

Therefore,

TeeoU dz = [ + (C2-1)"'] dw . (2.8)

5 If b = r/2aaU, then (2.6) yields

I
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dw 1 (2.9)

and

C = ie . (2.10)

3 Combining (2.8) and (2.9), we get

bUdz = [1 + ]LIL dC. (2.11)

Integrating the equation, we obtain

bUjdz= [1 + ( d ,

which upon evaluation of the integrals gives

3 bUz = + + 7 + (C2-1)/' - cos-(l/i) (2.12)

3 The coefficient of contraction a is easily determined from (2.12). Since the point B corresponds to C = 1, we

have bU2a = 2+,m, which yields a = ir,(i+2) in agreement with the classical theory.

To ,,ze (2.8), (2.10) and (2.12) to solve the jet problem we may proceed as follows.

I (I) Use (2.12) to trace the z -plane curves corresponding to the -plane rays:

3 =peia-g 7< < ir/2, 0<p<R.

According to (2.10),

C= eiOeib / 2 .

3Therefore, the z -plane curves are the streamlines

IV = (oc-r2)/b

lying in the right half of Figure 2. In particular the streamline ABC corresponds to c = 0. Note that the

I complex inverse cosine is given by

3 cos-1t = -i log (t +i (lIt2)A)

I
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3 (I) Observe that if

+ ( Re-1) "

I then by (2.8)

3 Re' =U dz Eie
dw q

3Hence

q =U/R, 0 =f+i,

and (u, v) the velocity vector at z (C) is given by,

I u = q cos (O3+n) = -q cosp ,

3 v = q sin (JV+-r) = -q sino .

3 The object now is to use the streamline and velocity information to set conditions on certain curves in the

upper half of the complex z -plane. Specifically, we wish to know the pressure distribution along the segment

5 KLMN and the v velocity compoment on segment JK in Figure 7.

Assume that streamline RS passes through P on segment JK when = = poei a and through Q on seg-

ment LMN when = = ple' a . Using the previous notation, vp, the v-velocity component at P is

U s

vp = - R sin

3 where

I ~ + -)=Roe5 0

Furthermore, by Bernoulli's equation, pQ, the pressure at Q is given by

I 8U2

PQ = P + -
( -

where p, = pressure at S( =0) and 8 = fluid density are given constants, and RI is the magnitude of

I C1 + (C2- _i)"I.

I
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3 Finally, we note that the above discussion applied to a jet issuing from a wall. The solution li * , p

corresponding to a jet entering the wall through the aperature is obtained from the solution u,* v, p of the previ-

I ous case by letting fl = -u, P = -v,p = p.

I 3. Numerical Experiments

3 The numerical procedure described in the previous section was applied to a plane jet problem with ui

aperature half width of .001 (see Figure 1). Streamlines of the anlaytic solution are shown in Figure 8. The

3 derived pressure profiles along the far-field boundaries, and the velocity distribution at the mouth of the jet were

then used to set the boundary conditions for a series of numerical simulations of this problem by means of the

Scomputer code ALGAE (Frey, Hall and Porsching [1987]). ALGAE produces finite difference solutions of van-

5 ous two dimensional fluid transport models under a wide variety of geometries and boundary conditions.

I
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I Figure 9 presents streamlines of a steady ALGAE numerical solution obtained on a 28x35 (nonuniform)

5grid utilizing an inviscid-flow model. Figure 10 shows the analogous information for a model incorporating a

constant molecular viscosity of 0.02. Both solutions clearly reproduce the qualitative features of the analytic

3 solution. The inviscid ALGAE numerical solution shows a tendency towards recirulation in the lower right-

hand side of the flow region even though it is the inviscid model that gives rise to the analytic solution. This is

due to a slight inaccuracy in the resolution of the jet's boundary layer where it meets the wall. Insufficient reso-

lution of this boundary layer leads to numerical solutions that, as shown in Figure 11, are completely inaccurate.

The viscous ALGAE numerical solution, on the other hand, shows no recirculation tendencies.

3
I
I
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CHAPTER 3

DUAL VARIABLE SOLUTION OF THREE DIMENSIONAL, INCOMPRESSIBLE FLOW PROBLEMS

1. Introduction

The dual variable method (Amit, Hall and Porsching [1981], Dougall, Hall and Porsching 11982]) is a dev-

ice to reduce the computational cost of solving the systems of (linear) equations that arise in many natural

discretizations of fluid transport models. To date, the method has been applied to two dimensional transient

problems. While the fundamental ideas of the method readily extend to three dimensions, implementations

require the practical resolution of certain graph theoretic questions. In the remaining sections of this Chapter,

we present the method in the context of the three dimensional Navier-Stokes equations, outline constructions and

algorithms for its implementation, and give some preliminary numerical results and performance data.

2. The Dual Variable Method

We describe the method relative to a finite difference discretization of the well known three dimensional

Navier-Stokes equations. We assume that the flow region is a rectangular parallelopiped, three of whose boun-

dary planes form a portion of the first octant of a Cartesian coordinate system. We do not give the finite

difference equations themselves since they are obvious generalizations of the two dimensional MAC equations

presented in Amit, Hall and Porsching [1981] and Dougall, Hall and Porsching (1982].

To simplify the presentation in this section, we assume that the boundary conditions are homogeneous and

the mesh spacings uniform. Then the resulting difference equations may be written in vector form as

AW = 0, (2.1)

QW = At Arp + b . (2.2

Here W e RL and P E RN(L > N) are vectors of the unknown velocities and pressures. A E RN L is the

incidence matrix of a directed graph associated with the finite difference grid, Q E RLxL is the combined

convection-diffusion operator, b E RL is a vector of source terms, and At is the time step.

It can be shown that the rank of A is N - 1. Therefore, dim(ker(A)) = L - N + 1. Let C E RLX(L- ' *



I- 33 -

have linearly independent columns and satisfy the orthogonality condition AC = 0. Any C satisfying these con-

ditions is called a fundamental matrix. By (2.1), W = Cy for some vector of "dual variables" y E RL- +l, and it

follows from (2.2) that

CTQCy = CTb (2.3)

I Note that whereas the size of (2.1), (2.2) is L + N, the size of (2.3) is L - N + 1. For three dimensional prob-

lems L = O(3N), so that for large N (2.3) is about 1/2 the size of (2.1), (2.2).

The main algorithmic questions associated with (2.3) are the construction of C and the solution of (2.3)

Sitself.

3 3. Construction of C; A Cycle Basis

By ising the fact that A is the incidence matrix of a digraph, the construction of C is straightforwored in

I principle. Indeed, if the columns of C correspond to any set of L - N + I linearly independent cycles of the

digraph, then C is a fundamental matrix (Berge and Ghouila-Houri [1965]). In the case of two dimensional

problems (i.e. planar graphs), the choice of the elementary cycles leads to an especially sparse matrix C (no row

3 has more than two nonzero entries). For three dimensional problems of the type considered here, Ye [1988] has

given an analogous construction based on the four cycle stencils shown in Figure 1. Stencil (a) applys only on

5 the lower horizontal "plane" of nodes in the graph, stencil (b) on the interior-horizontal planes, while the stencils

of (c) and (d) apply respectively on the vertical "front" and "right" planes. These cycles are independent and a

counting argument shows that there are exactly L - N + I of them.U
4. Solution of Dual Variable Systems

3 At each time step it is necessary to solve the dual variable system (2.3). In the two dimensional case this

was done directly by employing a "frontal" method. For three dimensional problems, the size of this system

militates against such an approach' At the same time, empirical studies by Hageman [1975a, b] and Mesina

3[1988] demonstrate the efficiency of interative methods in the solution of large scale systems such as the one

encountered here. Consequently, we consider the solution of (2.3) by means of an iteration.

1 If A is the uniform mesh spring, then the order of the coefficient matrix CTQC is 0 (2N) = 0 (2/h 3).

I
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Classical iterative methods such as the (block) Gauss-Seidel an-". SOR methods are guaranteed to converge

if the coefficient matrix is symmetric and positive definite (SPD). The same is true of projection mew,.ds such

as gradient and (preconditioned) conjugate gradient methods. Unfortunately, the coefficient matrix CTQC in

5 (2.3) miy fail to be SPD by virtue of a nonuniform mesh and/or convection effects. Thus, we devise a splitting

of CTQC whose diagonal block is SPD and is such that some of the nonsymmetric effects of the original matrix

3 are incorporated into this block.

3 To describe this splitting, we let Q = [qi,] be any JxJ matrix with a positive diagonal,

D = diag(q 1 , , qjj). (The matrix Q of (2.3) has this property). Now we split Q as

3Q =D +E,

3where

E = [e,,e, = i--j

3Let 0 > 0 and consider the symmetric matrix,

I
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Q = D + (E + E r ) .

will be strictly diagonally dominant if

I qii > "Oqij + qi,# I I ' ,J,

3 i.e., if

I 1 . (4.1)1: 1 i  j q + qj i '"

j i

3 Thus, if 0 satisfies (4.1), then 0 is a symmetric, strictly diagnnally dominant matix (and therefore SPD).

3 If Q is already symmetric and strictly diagonally dominant, then

qji > Y, Iqij I , I1,•••, J .

Therefore,I q___ 1.

2 qii >- i=l, ,J. (4.2)

In this case, the choice 0 = 1/2 satisfies (4.1) and in fact yields Q = Q. Guided by (4.1) and (4.2) we let

I r = in ri

3 Then we take

if r >(4

.9r if r (4.3)

With this choice of 0 we always obtain a SPD matrix 0. The corresponding SPD splitting for (2.3) is

3 CTQC y= CT(Q - Q)Cy+ CTb , (4.4)

3 from which we deduce the (outer) iteration,

C QCYk = CT(Q - Q)Cykl + CTb . (4.51

System (4.5) is of the form Au = f with

I
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A = CrQC,

3 and

3 f = CT(Q - Q)Cylk- + CTb

Note that if 0 = 0, then (4.5) reduces to the "Transformed Jacobi" method of Mesina [1988]. Note also

that the factor .9 in (4.3) may be replaced by any positive quantity less than 1. Indeed, it can probably be

3 replaced by 1 in practice. Its effect is to guarantee that 0 is strictly diagonally dominant (and hence SPD). But

there are other conditions that imply positive definiteness. For example, if 0 is an irreducible matrix, and if

Sr i  r. for some 1 < i, j < J, then for 0 = r, Q is irreducibly diagonally dominant and so CTQC is SPD.

Now we turn to the solution of the SPD system (4.5). In view of the above remarks, it suffices to con-

sider the generic system

3 Au =f , (4.6)

3 where A is an SPD matrix of order (say) N.

We apply the partial preconditioned conjugate gradient method (PPCG) to (4.6). The method can be

3 described in algorithmic form as follows.

Initialization:

K = Number of PPCG iterations to the taken, K > 1.
n = Number of preconditioned conjugate gradient steps to be taken per iteration, n 2! 1.
u= Initial approximation of u.
P = SPD splitting or preconditioning matrix.
E= Convergence criterion, e > 0.

i. ro = f -Auo

3 2. If roro _E then

U = U 0

Stop
end if

3 3. Fork = I -. ,K

V0 = Uk-1

Forj = I ,
Solve Pz,_ = r 1. for z,_1
Ifj = I, thenI
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= 0
~PI = Zo

else

Pj=T

3Pj = ZF-I + piPj-i
end if

3 =pfAp,
V1 = -I + ctIpj
rj =r._1 - oajApjIf rrj < , then

U = Vj

Stop
end if

Uk = V.

4. Print warning that convergence has not occurred.

15. U = UK

36. Stop.

We remark that the PPCG algorithm reduces to the usual preconditioned conjugate gradient (PCG) algo-

3rithm if K = 1 and n = N.

Regarding the convergence rate of the PPCG method, it can be shown Luenberger [1973] that if the eigen-

values of the SPD matrix P-'A are

0 < XN < 
XN_ .< <!5 Xn.X, ,

5 and ek = u - Uk, then

Ilek "1A ! 'leolA

where UXl 1A -(XT Ax) , 6. This proves the convergence of the algorithm for any choice of n. Moreover. it

In = N, then lie I "A = 0, i.e. the algorithm converges in 1 step in the absence of roundoff. This is a well known

3feature of conjugate gradient algorithms. Since each iteration of of the PPCG algorithm incorporates n -steps of

the PCG, we also have (Luenberger [1973]). the more familiar estimate,

-Ilek "A S 2 [ j X I-le A (4 X

Both estimates (4.7) and (4.8) indicate the desirability of choosing P such that P-1 A has a narrow spectrum.
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The PPCG algorithm may be implemented even when A is not SPD. However, this form of the algorithm

can break down since it is now possible for pTAp, to vanish. Also the estimates (4.7) and (4.8) no longer hold.

Each iteration of the PCG algorithm requires n system solves (for zj,) and n matrix-vector multiplica-

tions (for Apj). Storage for five vectors (zj_,, pj, Apj, rj and vj) is also needed. Clearly, the preconditioner P

3 should be chosen so as to simplify the solution of Pzj I = r 1.. For this reason, the choice

P = diag (a1 I . . . . . avN) is often made. This gives rise to the partial Jacobi conjugate gradient (PJCG)

3 method since it can be shown that the resulting algorithm is a polynomial accelerated version of the classical

I Jacobi method;

xk+i = (I - P'A )xk + P-f

I Another possible choice for P is

P = (B + toL)D-I(D + W.),

where D and L are respectively the diagonal and lower triangle of A and o) E (0,2) is a parameter. This yields

the partial symmetric succesive over-relaxation conjugate gradient (PSSORCG) method. Note that solution of

3 the system PzJ 1 = r,_1 amounts to the solution of two triangular systems. The PJCG and PSSORCG methods

can be implemented by restarting respectively the JCG and SSORCG subroutines of ITPACK software package

(Kincaid et. al. [1981]).

3 5. Numerical Experiments

In this section we present some preliminary results from a computer code that utilizes the algorithmic

I approach described in the first four sections of this chapter. This code, R3IT, is under development at the

University of Pittsburgh and runs on the CRAY XMP-48 at the Pittsburgh Supercomputing Center.

The test problems involve three dimensional driven cavity flows as described in Mansutti et. al. [1987].

3 The cavity is a cube two units on a side. No-slip boundary conditions are applied on the lid, floor and the two

walls that are transverse to the motion of the lid. Depending on the simulation, either free or no-slip conditions

I hold on the two walls that align with the lid motion. The lid translates with a uniform unit velocity, and the

3 Reynolds' number is 400.

I
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Since the midplane between the two aligned walls is a plane of symmetry, it suffices to repalce this plane

3 with a free-slip wall and simulate the flow in only one half of the cavity. Accordingly, a 1Oxlx5 uniform

mesh is used to discretize this "half-problem". Note that when the free-slip condition is used on the remaining

aligned wall, the problem becomes two-dimensional in the sense that there is no motion in the transverse direc-

3 tion.

Figure 2 shows floor-to-lid plots of the driven component of the velocity taken at the vertical centerline of

I the plane of symmetry. The 3-D simulation with a free-slip aligned wall reproduces a 2-D simulation obtained

with the ALGAE code (Frey, Hall and Porsching [1987]). While there is general qualitative agreement between

this solution and that of Mansutti et. al. [1987],, it shows considerably more dissipation than the latter. This is

3 due to the well known numerical diffusion effect introduced by the use of upwind differences for the convection

terms in R3IT. (See Chapter 1 for another illustration of this phenomenon.) When the no-slip condition is used

3 on the aligned wall, the profile is even more attenuated in respone to the energy dissipation at that wall.u The lOxlOx5 grid used in these simulations gives rise to a dual variable system (2.3) containing 805 unk-

nowns. This is not large enough to exhibit the advantage of using an iterative method for its solution. In fact, a

3 comparison of solution times shows that a direct solution of the systeri by LU decomposition is slightly faster

than solution by the PPCG methou uf the previous sectionl. This is not surprising since other studies (see for

3 example, Hageman [1975a1 and Mesina [19881) have also shown that direct methods are competitive with and

sometimes faster than iterative methods for small problems. Such advantages disappear with increasing problem

I. size.

I
I
I

3 The direct SOUlCtim oe is 5,5 sec. per time step whereas tie PPCG method solution time is 7.5 sec. per time step.

I
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